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Abstract

In this work, questions about interpolation and approximation of a continuous function
f:Z,-»R (f : Z,—Q,) by functions of the form 25:1 Zk|x — x|, are discussed. The theorem
about uniform approximation of a continuous function 1 : Z, —» R is proved. Nonexistence of

such approximation for a @Q,-valued function is shown.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A basic motivation to write this article was to develop some interpolation principle
for approximation of a function of p-adic argument. During the last 10 years, p-adic
numbers were used intensively in quantum physics, see, for example, books [6,12].
Thus, it is natural to develop an analysis of p-adic functions and approximation
theory in such a direction. There were many papers about p-adic interpolation and
approximation of a continuous function but most of them were devoted to some
generalizations of p-adic interpolation theorems of Mahler and Dieudonne, see
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[3,7,8]. Works such as [1,2,5,9,11] contain such results. We also point out the article
of Grintsyavichyus and Markshaitis [4] as more related to the topic of our work. The
above articles except the last one dealt with interpolation and approximation of a
Q,-valued function. The results of our article refer to approximation for a
real-valued continuous function on the p-adic integers. At the basis of the results lies
the very simple idea that any real-valued continuous function of real argument
can be interpolated and approximated by a piecewise linear continuous function.
Here, we propose to interpolate a real-valued continuous function on p-adic
integers by p-adic analog of the piecewise linear continuous function. Furthermore,
we will prove that the interpolating function is an approximating one in the uniform
metric.

Let us define some basic notations. p denotes a prime number. Let N and Ny be a
set of positive and nonnegative integers, respectively. Denote by |-| or |-|, a
standard valuation and by | - |, a p-adic one. We use the symbol |- |, , when we do
not make a difference between |[-|, and |-|,, ie. formulas are true for both
valuations. Let B,(y) = {xeQ: [x —y[,<p’}. Designations By(0), By, Z, are
equivalent. Denote an indicator or a characteristic function of a ball B,(y) by

o0

I (y(x). For neNp, we set p"xp" block-diagonal matrices Ix(n) =

n

(5[1‘—1] [1‘—1])[;./‘:17 k=0,1,...,n, where 6., equals one if x =y or zero if x#y and

pk s?

[] denotes an entire part of a number. These matrices have two properties: (1)
p

—_— .
Diag{li(n), ..., Ix(n)} = (n+ 1) and (2) I;(n) - I;(n) = Ij(n) - Ii(n) = p' - I;(n), when

0<i<j<n. Let {ei}‘;’il be a standard basis of vectors ¢; = (0, ...,0,1,0, ...,0) e R”".

2. Statement and solution of the interpolation problem

Let f be a continuous function on Z,. For every neN we have uniformly
distributed points 1,2, ..., p". Let us consider p-adic expansion of these points and
enumerate them by the lexicographical order. After that we shall obtain points
X1,X2,...,Xp. They are centers of balls B_,(xx), k=1,2,....,p" and Z,=
]_H:l B_,(x¢). In particular, when p =5 and n =2 the enumeration is shown in
Fig. 1. Denote y; .= f(xx), k=1,2,...,p". The problem is to find coefficients 1, for
the function

p)’l
My(x) =" Julx = xl, (1)
k=1
such that
M,(x;))=y; Vi=12..p" (2)

We will be able to construct a matrix of system (2) inductively.
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Fig. 1. The enumeration of the partition of Zs.

Denote by K, = (|x; — x¢|,),_;, n=1,2, ... the matrix of (2).

Lemma 1. The following expansion of K, is valid.

1 n—1 _ 1
K, = —pn—_llg(n) - ;(’;ﬂ_k Ik(n)) +1,(n). (3)

Proof. Here, we use a self-similarity of Z, and the first property of Ir(n) 0<k<n
(see Introduction).
For n =1 we have

Ky =—Ip(1) + 1 (1).

Forn =2,
—
K2 :IZ<2) - 11(2) +p71 Diag{Kh ~--7K1}

=5h(2) - LQ2)+p ' (~1(2) + 1(2))

— —p ') -1+ 1)
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When n = 3 we obtain that
p

K3 =L(3) — L(3) + p ' Diag{K,, ..., K>}

‘1mn+bm)

1 -1 -1
== 103) - == h3) - = b03) + 103).
p p

Suppose that (3) is true for K, | (inductive assumption). When the subscript of the
matrix of (2) equals n we get

P
) —_———
Kn :In(”) - Infl(n) +P71 Dlag{&th "';Kzfl}
-2
=1,(n) — n,l(n)—i—pfl <_ — Ip(n n)+ L1 (n ))
=1

which equals (3). O

Now, to solve (2) we should invert K. But first we prove the next lemma. Further,
we will omit (n) in formulas with i (n).

Lemma 2 (Criterion of invertibility of a matrix from span</ly, I, ..., I, >). A matrix
A=Y _garly is an invertible iff Z?:o app'#0 for all k=0,1,....n and A~' =
> i—o bili, where by = L,
ay

[ —— A
Zi:o a;p' Zi:o a;p’

b = — k=12, ..,n (4)

Proof. Recall that matrices {/i };_, have the following property:

L-Li=1-1=p, if0<i<j<n. (5)
It means that span{ Iy, I, ..., 1, is an algebra. Therefore, if 4! exists, then, it must
have the same expansion as 4. Namely, 47! = Z}LO bil;, where b;, j=0,1,...,nare

unknown coefficients which can be derived from the identity
S ade Y bl =1
k=0 j=0

Let us multiply the left-hand side of the last equation taking into account (5) and
equate coefficients with I; on both sides. We have

ag-by=1,

k-1 k
2 ;Pibi+ (Zo: aipi>bk =0, k=12,...,n
1= =
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This is the system of linear equations with respect to by, k =0, 1, ...,n which has a
solution iff Zf:o ap'#0, k=0,1,...,n and next recurrent relations hold:
1
bO =
ao
—ax (i bip')
by =—2=20"— k=12 ..n (6)
> ico @ip'
Remark that if @y = 0 for some indexes ke {1, ...,n}, then by = 0 and formula (4) is
true. So we eliminate from considerations all a, = 0. Let

a, #0, kieA<={0,1,2,....,n} for all [ =0,1,2,...,L. We set ag, = ag, bk, = bo.
Therefore, we have the following relations:
1
by, = —
ko ako’
_ ki by
by = im0 b0) (7)
Loaip!
We can rewrite these formulas as
1

by = —
k() ako?
by, = ,qli‘j
Zi: L
ko
by, = lefﬂb’w L 1=23,.. L (8)
Ay D g aip!

Let us multiply j + 1 first equations in (8) and reduce coefficients by, by, ..., by,
from both sides. We have

b - — Lo (e Siiar
I Wy S aipt 13\ S ap!
a .
== ]:2,3,...,L. (9)

ZkLl a;p! Z
From (8) one can conclude that the last equality in (9) holds for j =1 too. Since
ki1 <k;— 1, then a; = 0 for all ie (k;_;,k; — 1). Therefore, 21.1‘ ap’ = Zf‘lol ap'.
Finally, we can rewrite (9) as
1

ay.
by, = K L j=1,2,...,L (10)

/ Zfl 01 ap' Zflo ap
Comparing (10) and (4) we see that both cases @, = 0 and a; #0 can be described by
4. O
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Theorem 1. Let f be a function acting from Z, to R or Q,. Let {xk}i“:l be a sequence
1,2, ...,p" ordered by the lexicographical law. Then there exists the unique function

M,(x) = f:l A|x = xi|, such that M, (x;) = f(x;) for all i = 1,2, ..., p".

Proof. Applying Lemma 2 to K, from (3) we find K, ' = >"7_ by, where
bO = _pnila
_ (P+1)(p2_1) ntk—2
bk*(p2k—1+1)(p2k+1_~_1)’p , Isksn—1,
12
bn: <p+ )7 .p2n—2. (11)
P —1D)(p»T+1)
Now we have to find 4;, i =1, ...,p". The above considerations imply that
r" " n " n_
Z /Il-e,- = Kn_l . Z yiei = Z bk[k Z yiei = Z Z y,-bklke,-. (12)
i=1 i=1 k=0 i=1 k=0 =1
The last formula in (12) contains the expression Iie;. It is not hard to see that
1+t
lye;=¢; and Iie; =Y 1 ’E;quej for all k=1,2,...,n and i=1,2,...,p". Sub-
J=14+E P
Iz

stituting the value of Ie; into (12) we get

” ” I
D he=bo Y yieitd b)Y v . 4 (13)
i=1 i=l k=1 =l j:1+[i‘;71]pk

(here and below [-] denotes an entire part of a number). Since the conditions
L<icy! i—1] 5. . i— 1]\ &
<i<p’ and 1+ |—— sy 1+ |——| |p
p p
are equivalent with

. i—1 j—1
icr ana [ = ]
we obtain

e

v ) n P
POPTET'D SETES SIS S SRS (19
i=1 i=1 k=1 i=1

) i—1, .
[k
J=1
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which yields

o O
Ai=boyi+Y b >y, i=12,..p" (15)
k=l j:l+[ip%l]pk

Since (2) has the unique solution (15), the function M, exists and is unique. [

Remark 1. The lexicographical ordering of 1,2, ..., p" was necessary just to invert

the matrix of distances K. Since the value of sum (1) does not depend on an order of
summation, we may write that M,(x) =" Ju|x—i|, where (k;)!, is a

corresponding permutation of (1,2, ..., p").

p?

3. Statement and solution of the approximation problem

Proceeding from the previous section we have the questions. Does the function M,
converge to f uniformly when n tends to infinity? What restrictions on function f
imply such convergence? Answers will be given in Theorems 2 and 3. But first we
have to prove the lemma.

Lemma 3. The following formula holds:

o
, 1
max| M, (y) = > yilp )(0)| = max |21 o o (16)
i=1 L =

yeBy

.....

Proof. Let us find the difference between M,, and
”
Jo= Z inB,n(x,-)- (17)
i=1

By the construction of M, we have that M,(x;) =y;, i=1,2,...,p". Let y be an
arbitrary point in By such that y#x; Vk=1,2,...,p". Since By = ]_[1,’;”:1 B_,(xx),
there is a ball B_,(x;) such that ye B_,(x;)\{x;}. As a result of this we can write

"

i—1 )4
My(y) =D daly = xel, + ly = xil, + D Akly — el
k=1 k=i+1

Since a distance between points of different balls is equal to the distance between the
centers, we can replace y in the first and last sums with x;. After that, we get the
equality M, (y) = My(x;) + 4|y — xi|,, yeB_,(x;) which can be performed to
M, (y) = yi+ Aly —xil,, yeB_y(x;). If yeB_,(x;), j#i then M,(y)=y;+4%
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|y — x;j|,- Resuming last two equalities one can conclude that

7

V4

[)”
My(y) =" yilp o)) + > Jily = Xil Is_, ) (9)-
i=1

i=1

This obviously gives us

)
: : (1)

n

p

> dily = xil 00 ()

i=1

sup | M,
yeBy

= sup
yeBy

0,p ©.p

In the case of a standard norm |-|_, the right-hand side of the equality is a
maximum of a continuous function over the compact set By. Therefore, it is attained
at the point y. So we can write

Z szB (xi)

sup | M,

=kl 17 =xil,,  FeB_(x1).
y€By

o0

In this case, the point y must belong to B_,(x;)\B_,—1(x;) and |;| must be
maximal. Otherwise, we will get a contradiction with the maximality of | Z‘:’:l Aily —
Xil,B_,(x;)(¥)] .- Therefore, we obtain formula (16). [

Theorem 2. Let f: Z,— R be a continuous function. Then for any ¢>0 there exists a
positive integer N, such that for all n> N,

|M,(x) —f(x)|<e, VxeZ,. (18)

Proof. Let us split our proof into two steps. The first step is to prove the theorem for
a characteristic function of a ball. The second step is to prove the theorem for an
arbitrary continuous function.

Step 1: We shall approximate a characteristic function I (), where B_,,(x;) is an
arbitrary ball in Z,. Without loss of generality, we can assume that x;eNp. In a
contrary case, there is a point xfeNj (since Ny is dense in Z,) such that |x; —

x| ,<p™" and the equality Ip () =1 B () is true. Therefore, one can assume that
x; is a center of B_,(x;) and x; is a point from the partition xi,x, ..., X, Z, =

11’:11 B_,(x;). Let us divide every ball B_,,(x;) into p" balls. After that we obtain the
partition Xy, Xa, ..., Xpuim, Where Xp_pyi1, ..., Xp1€B_p(x7). Then y; =1 if i=

p'(l—=1)+1,...,p"l and y; = 0 otherwise. We can construct the function M, ,,(x) =

1-+-m n \
S Ailx — Xil,, where ; can be found from the formula

e
wam (DA

)»,'Zbo)’i—f'z bk Z Vs i= 1727~--717n+m' (19)

) i—1, .
=1+ 1Pk
J [pk Ip
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Taking into account the values of y; we can rewrite (19) as

)uj:(bn +bn+l+-..+bn+m)p” for 1<l<pn(1_1)7 (20)
n n+m
)»j:Zbkpk—‘r Z bkp” fOrpn(l_l)‘f'lSiSp”l, (21)
k=0 k=n+1
Ai = (bn+l 4 e 4 bn+n7)p’1 for p"l + 1<i<p11+"1, (22)
where
b() — _pn+n1—l

:pH"er*z(p + 1)(P2 _ 1)
(ka—l + 1)(p2k+1 + 1)

5 B p2n+2m—2(p + 1)2
n+m — (p2n+2mfl + 1)(p2n+2m _ 1)

by for k=1,2,....n4+m—1,

(23)

Remark that if m =0, then /:=1 and we will obtain only the first sum in (21).
Denote by B, == p" S 72" | bi. Then (20)-(22) are rewritten as

k=n+1
Ji=byp" + B, for 1<i<p"(l—1), (24)
A=Y bip"+ B, for p"(I— 1)+ 1<i<p"], (25)
k=0
ii=B, for p"l+1<igp"™". (26)

Let us substitute by from (23) into (24)—(26) and find an asymptotic for |4;|. Using (23)
<@’ +1)<2p’ and p'<p’ —1<p’, y,meN, (27)

it is easy to see that
}T(P + 1)(172 7 1)p73k+n+m72 <bp< (P + 1)(P2 7 1)p73k+n+m727

whenk=n+1,...,.n+m—1
%(p + 1)2p72n7mfl <bn+m<2(p + 1)2p72n7m71.

By notation of B, we obtain that
n+m—1

! 1
_ ([9 4 1)([92 _ 1)p2n+n172 Z p—Sk 4= ([9 + 1)2]972"7'"71
4 k=n+1 2

n+m—1

<B,1<(p + 1)(})2 _ 1)p2n+mf2 Z p73k + (P + 1)2p72n7m71.
k=n+1

The sum in the last formula can be reduced as a sum of a finite geometric progression.
Therefore, we have

WCip+ D" = Dp ™ +4p+1)’p " <B,
<C (p + 1)(p2 — l)piner*S + 2(p + 1)2p7n73mfl’ (28)
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1— -3

m—3
where C| = lfp,g . That means

B,=O0(p™""2), n-oow. (29)
Since (see in (23))

p3n+m—2<p 4 1)(p2 _ 1)
(p2n71 + 1)(p2n+1 + 1)

and using (27) one can conclude that

p+1)(p* = Dp 22 <bp" < (p+ 1)(p* — 1)p~2m=2,

So, it has an asymptotic equality

bnpn =

bnpn — 0(p—2n+m+l)7 n— o,
which together with (29) gives us a formula
byp" + B, =O0(p™""?), n- . (30)

Comparing (30) with (24) and (29) with (26), we can say that for |/;| from (24) and
(26) the following asymptotic formula is valid:

2l = O0(p™"™" ), n— oo, (31)
where

ie{l, ..p"(=D}ofp"l+1,....p"™".

Let us find an asymptotic for 4; from (25). Using

(pZ _ 1)p2k—1 1 1

(PFT 4 D) (Pl 4 1)  p-l 4] p+l ]

we obtain that

- k nim—1 P +1
kz; bp* = —p"* LT (32)
It yields that
Z bkpk _ 0(p—ﬂ+lﬂ—l). (33)
k=0

Egs. (29) and (33) imply that

il = 0™, noo, ie{p"(I-1)+1,...,p"}. (34)
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By (31) and (34) we have the asymptotic

max |4 = 0@ "™ ") asn- o,
I'_l....yp”‘*’ﬂl

and by (16) we have that

max |Myn(x) = L5, () (X)| = O(~"7), n—> 0.
xe”Z,

In other words, there is a positive constant C such that
max |Myim(x) = Ip ) ()| <Cp2"~" for all n>ny. (35)

xeZ,

Step 2: Since any continuous function f : Z, - R can be uniformly approximated by
linear combinations of indicators I, () (see [10, Theorem 26.2]), for any ¢>0 there
exists meN such that

p/n
= vl o) (x)
=1

for all xeZ,. Using the ordinary triangle inequality we can obtain the following
estimation:

<e (36)

Zyl n+m

pm
=Y vl o) (x)
I=1

+ lim:ylle ) Z M (37)
=1
Expressions (36) and (37) imply
Z yMY,(x)|<e+ 12 Villls ) (%) = MY, (). (38)
Applying (35)7(38) and using |y/| <maxez,|f(x)| we obtain
Z nML ()| <e + € max 1/ (x p"p >t (39)

When 7 tends to infinity Cp”p>'~! tends to zero. Therefore, there exists a positive
integer N, such that for all n> N, C max,cz,|f(x) |p"p?"~! <&. Therefore, (39) yields
If (x) — 7"11 ylM,(,+m( )|<2¢, for all n>N, and xeZ,. Setting M, ,(x) =

mn

S viM, +m( x), we will get the assertion of the theorem. [

Let us remark that the p-adic absolute value of a p-adic integer is an integer power
of p, hence, an element of Q,. That means system (2) can be solved for y;€Q,,
i=1,2,...,p". Therefore, 1,€Q,, i=1,2,...,p" and one can consider M, as a
Qp-valued function. Let us demonstrate what is going on in such a case.
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Theorem 3. Let f: 7,—Q), be a continuous function. Then
sup [Mu(y) =/ ()], = +o0. (40)

yeZ,

Proof. In the case of p-adic valuation, we cannot use the theorem about the
maximum of a continuous function because |[x — x;|, has a singularity at x; as a Q-

valued function. As a supremum of a function always bigger than the value of a
function at the point, we may write
1)71

sup Z ;“i|y_xi|plB,n(X;)(y) >|;“1|p‘|ﬁ_xl|p|pa
yeBy | »

where ¥ is an arbitrary point in B_,(x;)\{x;}. If J/ is taken close to x;, then |4/], -
|[ = xil,|, tends to infinity. That means (40). [

Remark 2. Theorem 3 shows that f": Z, - Q, cannot be approximated. This happens
because small numbers ka in R are large numbers in Q,. In this case it might be more

natural to consider the function of the type

" _

)

where dy, (x) = 1, if x = x4 and J,, (x) = 0 otherwise.

References

[1]1 Y. Amice, Interpolation p-adique, Bull. Soc. Math. France 92 (1964) 117-180.

[2] M. Bhargava, K.S. Kedlaya, Continuous functions on compact subsets of local fields, Acta Arith. 91
(3) (1999) 191-198.

[3] J. Dieudonne, Bull. Sci. Math. 68 (2) (1944) 79-95.

[4] P.K. Grintsyavichyus, G.N. Markshaitis, Expansion of characteristic functions of open sets of a
p-adic integer ring in certain polynomials of a p-adic norm, and a special case of the Weierstrass—
Stone theorem, Lithuanian Math. J. 23 (1) (1983) 40-43.

[5] Ha Huy Khoai, p-Adic interpolation, Mat. Zametki 26 (1) (1979) 101-112.

[6] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and
Biological Models, Kluwer Academic Publishers, Dordrecht, 1997.

[71 K. Mahler, J. Reine Angew. Math. 199 (1958) 23-34.

[8] K. Mahler, Introduction to p-Adic Numbers and their Functions, Cambridge University Press,
Cambridge, 1973.

[9] L. van Hamme, Jackson’s interpolation formula in p-adic analysis, Proceedings of the Conference on
p-adic Analysis, Nijmegen, 1978, Report 7806, Katholieke University, Nijmegen, 1978, pp. 119-125.

[10] W.H. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge, 1984.

[11] V.K. Srinivasan, Cam Van Tran, On an approximation theorem of Walsh in the p-adic field,
J. Approx. Theory 35 (2) (1982) 191-193.

[12] V.S. Vladimirov, 1.V. Volovich, E.I. Zelenov, p-Adic Analysis and Mathematical Physics, World
Scientific, Singapore, 1993.



	p-Adic interpolation and approximation of a continuous function by linear combinations of shifts of p-adic valuations
	Introduction
	Statement and solution of the interpolation problem
	Criterion of invertibility of a matrix from spanlangI0,I1,hellip,Inrang
	Statement and solution of the approximation problem
	References


